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Abstract. The purpose of this paper is to introduce the notions of Weyl semi-sym-
metric, projective semi-symmetric and conformal semi-symmetric curvature tensor defined
on semi-Kaehler manifolds. Moreover, by using a new version of E. Cartan’s complex
exterior derivative method we give a complete classification of complex hypersurfaces M in
semi-Kaehler space forms Mn+1

s+t (c) with Weyl semi-symmetric, projective semi-symmetric
or conformal semi-symmetric curvature tensor, respectively.

1. Introduction. There exist well-known curvature-like tensors asso-
ciated with various geometric structures on manifolds, analogous to the
Riemannian curvature tensor R defined on a Riemannian manifold. Ex-
amples are provided by the concircular, projective and conformal curvature
tensors (see Mantica and Suh [MS1]–[MS4], Roter [Rt1], [Rt2], Yano and
Bochner [YB]).

Besse’s book [Be] mentions three curvature-like tensors defined on
Kaehler manifolds, namely, the Weyl curvature tensor, the projective cur-
vature tensor and the conformal curvature tensor.

Let M be a complex n-dimensional semi-Kaehler manifold of index 2s,
0 ≤ s ≤ n, with semi-Kaehler connection ∇. We denote by TM the tan-
gent bundle of M . Let TCM be the complexification of TM . Let T be a
quadrilinear mapping of TCM ×TCM ×TCM ×TCM into C satisfying the
curvature-like conditions

(a) T̄ (X,Y, Z, U) = T (X̄, Ȳ , Z̄, Ū),
(b) T (JX, JY, Z, U) = T (X,Y, JZ, JU) = T (X,Y, Z, U).
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Then T is said to be a curvature-like tensor on M . We will show that the
Weyl curvature tensor, the projective curvature tensor and the conformal
curvature tensor are curvature-like tensors on a semi-Kaehler manifold M .

First, as a complex version of the concircular curvature tensor, on a
semi-Kaehler manifold M we introduce a curvature-like tensor W , called
the Weyl curvature tensor, defined by

Wījkl̄ = Rījkl̄ −
r

2n(n+ 1)
εjk(δjiδkl + δikδjl)

where R and r denote the curvature tensor and the scalar curvature respec-
tively.

Next, as a complex version of the projective curvature tensor, on a semi-
Kaehler manifold M we consider another kind of curvature-like tensor G,
called the complex projective curvature tensor, defined by

Gījkl̄ = Rījkl̄ −
1

n+ 1
(εjδjiSkl̄ + εkδkiSjl̄),

where S denotes the Ricci tensor of M .

Finally, let H be the conformal curvature tensor with components Hījkl̄

defined by

Hījkl̄ = Rījkl̄ −
1

2(n+ 1)
(εkδklSjī + εjδjlSkī + εjδijSkl̄ + εkδikSjl̄).

This was introduced by Bochner [Bo] as a formal analogue to the Weyl
conformal curvature tensor on a Riemannian manifold (see also Yano and
Bochner [YB]).

When M is Einstein, its Ricci tensor S satisfies the condition

Sij̄ =
r

2n
εiδij .

In that case the complex projective curvature tensor G is equal to the Weyl
curvature tensor W . In Section 6 it is shown that G is the same for two
complex connections which are projectively related. Moreover, an indefinite
Kaehler manifold with vanishing complex projective curvature tensor G is of
constant holomorphic sectional curvature if M is Einstein (see Goldberg [G]
and Yano and Bochner [YB]).

Semi-symmetry for semi-Kaehler manifolds was introduced by Choi,
Kwon and Suh [CKS1]. A semi-Kaehler manifold M is said to be semi-
symmetric if it satisfies the condition R(X,Y )R = 0 for any vector fields X
and Y on M . This condition is weaker than the one characterizing locally
symmetric spaces, that is, ∇R = 0. Semi-symmetry for Riemannian spaces
was introduced by Szabó [Sz].

In [CKS1] semi-symmetric complex hypersurfaces in semi-Kaehler space
forms Mn+1

s+t (c) are classified as follows:
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Theorem A. Let M be an n-dimensional semi-symmetric complex hy-
persurface of index 2s in Mn+1

s+t (c), 0 ≤ s ≤ n, t = 0 or 1, c 6= 0. Then
M is totally geodesic with scalar curvature r = n(n + 1)c, or Einstein with
r = n2c.

A semi-Kaehler manifold M is said to be Weyl semi-symmetric (resp.
projective semi-symmetric, conformal semi-symmetric) if the Weyl curva-
ture tensor W (resp. projective curvature tensor G, conformal curvature
tensor H) satisfies the condition R(X,Y )W = 0 (resp. R(X,Y )G = 0,
R(X,Y )H = 0) for any vector fields X and Y on M .

Now we introduce the notion of recurrent curvature-like tensors on semi-
Kaehler manifolds (see [MS1], [MS2] and [SK]).

The Weyl curvature tensor W (resp. the projective curvature tensor G,
the conformal curvature tensor H) is said to be recurrent if there exists a
1-form α such that ∇W = α⊗W (resp. ∇G = α⊗G, ∇H = α⊗H).

In particular, when the 1-form α vanishes identically, the Weyl recurrence
condition is reduced to ∇W = 0, that is, M is Weyl symmetric. If M is
locally symmetric, that is, ∇R = 0, then its scalar curvature r is constant.
So we know that M is then Weyl symmetric, ∇W = 0. Of course, M must
then also be Weyl semi-symmetric. For projective recurrence and conformal
recurrence, we have the corresponding results.

Moreover, it can be easily seen that a Kaehler manifold M with recurrent
Weyl curvature tensor W (resp. projective curvature tensor G, conformal
curvature tensor H) satisfies the second Bianchi identity. Then naturally, by
using the method given in Sections 5–7 we can see that the recurrent Weyl
curvature tensor W (resp. projective curvature tensor G, conformal curva-
ture tensor H) satisfies the Weyl semi-symmetry condition R(X,Y )W = 0
(resp. projective semi-symmetry condition R(X,Y )G = 0, conformal semi-
symmetric condition R(X,Y )H = 0) for a Kaehler manifold M .

Thus, the property of Weyl semi-symmetry (resp. projective semi-sym-
metry, conformal semi-symmetry) is weaker than Weyl recurrence (resp.
projective recurrence, conformal recurrence). But it is an open problem
whether the properties of semi-symmetry, Weyl semi-symmetry, projective
semi-symmetry and conformal semi-symmetry of complex hypersurfaces in
semi-Kaehler space forms Mn+1

s+t (c), c 6= 0, are all equivalent or not.
In this connection, by using a new version of E. Cartan’s complex exterior

derivative method, we give a complete classification of Weyl semi-symmetric
complex hypersurfaces of index 2s in Mn+1

s+t (c):

Theorem 1. Let M be an n-dimensional Weyl semi-symmetric complex
hypersurface of index 2s in Mn+1

s+t (c), 0 ≤ s ≤ n, t = 0 or 1, c 6= 0. Then
M is totally geodesic with scalar curvature r = n(n + 1)c, or Einstein with
r = n2c.
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From Theorem 1 we see that semi-symmetry is equivalent to Weyl semi-
symmetry for a complex hypersurface in a semi-Kaehler space formMn+1

s+t (c).

Though the Weyl curvature tensor W , the projective curvature ten-
sor G and the conformal curvature tensor H are mutually different as de-
fined above, surprisingly we will prove analogous results for semi-symmetric
Weyl, projective and conformal hypersurfaces in semi-Kaehler space forms
Mn+1

s+t (c), c 6= 0. Accordingly, we give a complete classification of projective
semi-symmetric and conformal semi-symmetric complex hypersurfaces in a
semi-Kaehler space form Mn+1

s+t (c):

Theorem 2. Let M be an n-dimensional projective semi-symmetric
complex hypersurface of index 2s in Mn+1

s+t (c), 0 ≤ s ≤ n, t = 0 or 1,
c 6= 0. Then M is totally geodesic with scalar curvature r = n(n + 1)c, or
Einstein with r = n2c.

Theorem 3. Let M be an n-dimensional conformal semi-symmetric
complex hypersurface of index 2s in Mn+1

s+t (c), 0 ≤ s ≤ n, t = 0 or 1,
c 6= 0. Then M is totally geodesic with scalar curvature r = n(n + 1)c, or
Einstein with r = n2c.

2. Semi-Kaehler manifolds. This section is concerned with local for-
mulas for semi-Kaehler manifolds. Let M be a complex n-dimensional con-
nected indefinite Kaehler manifold of index 2s (n ≥ 2, 0 ≤ s ≤ n), equipped
with a semi-Kaehler metric tensor g. Let {Uj} be a local field of unitary
frames on an open set in M . Here and below, the small Latin indices j, k, . . .
run from 1 to n. We have g(Uj , Ūk) = εjδjk, where

εj = g(Uj , Ūj) = −1 or 1 according to 1 ≤ j ≤ s or s+ 1 ≤ j ≤ n.
In particular, if g is positive definite, then g(Uj , Ūk) = δjk.

Now, let {ωj} be the dual coframe field to {Uj}. Then {ωj}={ω1, . . . , ωn}
consists of complex-valued 1-forms of type (1, 0) on M such that ωj(Uk) =
εjδjk and {ωj , ω̄j} = {ω1, . . . , ωn, ω̄1, . . . , ω̄n} are linearly independent. The
semi-Kaehler metric g of M can be expressed as g = 2

∑
j εjωj ⊗ ω̄j . As-

sociated with the frame field {Uj}, there exist complex-valued 1-forms ωjk,
which are usually called complex connection forms on M , which satisfy the
structure equations

dωi +
∑
k

εkωik ∧ ωk = 0, ωij + ω̄ji = 0,(2.1)

dωij +
∑
k

εkωik ∧ ωkj = Ωij , Ωij =
∑
k,l

εklRījkl̄ωk ∧ ω̄l,(2.2)

where εk···l = εk· · ·εl and Ωij (resp. Rījkl̄) denote the components of the Rie-
mannian curvature form (resp. the Riemannian curvature tensor R) of M
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(see Barros and Romero [BR], Romero and Suh [RS], Kobayashi and No-
mizu [KN]).

The second equation of (2.1) accounts for the skew-Hermitian symmetry
of Ωij , which is equivalent to the symmetry conditions

Rījkl̄ = R̄j̄ilk̄.

Moreover, by the exterior differentiation of the first and the third equations
of (2.1), the first Bianchi identity

(2.3)
∑
j

εjΩij ∧ ωj = 0

is obtained. It implies the further symmetry relations

(2.4) Rījkl̄ = Rīkjl̄ = Rl̄jkī = Rl̄kjī.

Now, with respect to the frame field chosen above, the Ricci tensor S
of M can be expressed as follows:

(2.5) S =
∑
i,j

εij(Sij̄ωi ⊗ ω̄j + Sījω̄i ⊗ ωj),

where Sij̄ =
∑

k εkRk̄kij̄ = Sj̄i = S̄jī. The scalar curvature r of M is also
given by

(2.6) r = 2
∑
j

εjSjj̄ .

The semi-Kaehler manifold M is said to be Einstein if the Ricci tensor S
is given by

(2.7) Sij̄ =
rεiδij

2n
, S =

r

2n
g.

The components Rījkl̄n and Rījkl̄n̄ (resp. Sij̄k and Sij̄k̄) of the covariant
derivative of the Riemannian curvature tensor R (resp. the Ricci tensor S)
are defined by

(2.8)
∑
n

εn(Rījkl̄nωn +Rījkl̄n̄ω̄n) = dRījkl̄

−
∑
n

εn(Rījkl̄ω̄ni +Rīnkl̄ωnj +Rījnl̄ωnk +Rījkn̄ω̄nl),

(2.9)
∑
k

εk(Sij̄kωk + Sij̄k̄ω̄k) = dSij̄ −
∑
k

εk(Skj̄ωki + Sik̄ω̄kj).

The second Bianchi identity

(2.10) dΩij =
∑
k

εk(Ωik ∧ ωkj − ωik ∧Ωkj)

arises from the exterior differentiation of the first of the structure equa-
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tions (2.2). In fact,

dΩij =
∑
k

εkd(ωik ∧ ωkj) =
∑
k

εk(dωik ∧ ωkj − ωik ∧ dωkj)

=
∑
j

{(
Ωik −

∑
l

εmωil ∧ ωlk

)
∧ ωkj − ωik ∧

(
Ωkj −

∑
l

ωkl ∧ ωlj

)}
=
∑
k

εk(Ωik ∧ ωkj − ωik ∧Ωkj),

where the first equality holds since d2 = 0, the second one follows from
the fact that the complex connection form is a 1-form combined with the
properties of the exterior derivative, and the third one is derived from the
structure equations (2.1).

We can regard Ω = (Ωij) and ω = (ωij) as complex n×n matrices. Then
(2.10) can be rewritten as

(2.11) dΩ = Ω ∧ ω − ω ∧Ω.
By straightforward calculation we obtain

(2.12) Rījkl̄n = Rījnl̄k,

and hence

(2.13) Sij̄k = Skj̄i =
∑
l

εlRj̄ikl̄l, ri = 2
∑
k

Sik̄k,

where the exterior differential dr of the scalar curvature r on M is given by

(2.14) dr =
∑
l

εl(rlωl + rl̄ω̄l).

Let M be an m-dimensional semi-Kaehler manifold of index 2q (0 ≤
q ≤ m). A plane section P of the tangent space TxM of M at any point x is
said to be non-degenerate provided that gx|P is non-degenerate. It is easily
seen that P is non-degenerate if and only if it has a basis {X,Y } such that

g(X,X)g(Y, Y )− g(X,Y )2 6= 0.

If the non-degenerate plane P is invariant under the complex structure J ,
it is said to be holomorphic. For the non-degenerate plane P spanned by X
and Y in P , the sectional curvature K(P ) is usually defined by

K(P ) = K(X,Y ) =
g(R(X,Y )Y,X)

g(X,X)g(Y, Y )− g(X,Y )2
.

The sectional curvature K(P ) of the holomorphic plane P is called the
holomorphic sectional curvature, and denoted by H(P ). The semi-Kaehler
manifold M is said to be of constant holomorphic sectional curvature if H(P )
has the same value for all holomorphic planes P at all points of M . Then
M is called a semi-Kaehler space form, and denoted by Mm

q (c) whenever it
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is of constant holomorphic sectional curvature c, of complex dimension m
and of index 2q (≥ 0).

A semi-Kaehler manifold of constant holomorphic sectional curvature
is called a semi-Kaehler space form. An n-dimensional semi-Kaehler space
form of constant holomorphic sectional curvature c and of index 2s, 0 ≤
s ≤ n, is denoted by Mn

s (c). The components Rījkl̄ of the Riemannian
curvature tensor R of Mn

s (c) are given by

(2.15) Rījkl̄ = cεjεk(δijδkl + δikδjl)/2.

3. Semi-Kaehler submanifolds. This section is concerned with semi-
Kaehler submanifolds of semi-Kaehler manifolds. First of all, the basic
formulas for the theory of semi-Kaehler submanifolds are presented (see
Choi, Kwon and Suh [CKS1] and [CKS2], Romero and Suh [RS], Suh and
Yang [SY]).

Let M ′ be an (n + p)-dimensional connected semi-Kaehler manifold of
index 2(s + t) (0 ≤ s ≤ n, 0 ≤ t ≤ p) with semi-Kaehler structure (g′, J ′).
Let M be an n-dimensional connected semi-Kaehler submanifold of M ′ and
let g be the semi-Kaehler metric tensor of index 2s induced on M from g′. We
can choose a local field {UA} = {Uj , Ux} = {U1, . . . , Un+p} of unitary frames
on an open set in M ′ in such a way that, restricted to M , U1, . . . , Un are
tangent to M and the others are normal to M . Here and below, the following
convention on the ranges of indices is used, unless otherwise stated:

A,B,C, . . . = 1, . . . , n, n+ 1, . . . , n+ p;

i, j, k, l, . . . = 1, . . . , n; x, y, z, . . . = n+ 1, . . . , n+ p.

Let {ωA} = {ωj , ωy} be the dual frame fields. Then the semi-Kaehler metric
tensor g′ of M ′ is given by g′ = 2

∑
A εAωA ⊗ ωA, where {εA} = {εj , εy},

εA = ±1. The connection forms on M ′ are denoted by {ωAB}. The canonical
forms ωA and the connection forms ωAB of the ambient space M ′ satisfy the
structure equations

(3.1)

dωA +
∑
B

εBωAB ∧ ωB = 0, ωAB + ωBA = 0,

dωAB +
∑
C

εCωAC ∧ ωCB = Ω′AB,

Ω′AB =
∑
C,D

εCεDR
′
ĀBCD̄ωC ∧ ωD,

where Ω′AB (resp. R′
ĀBCD̄

) denote the components of the curvature form
(resp. the Riemannian curvature tensor R′) of M ′. Restricting these forms
to the submanifold M , we have

(3.2) ωx = 0,
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and the induced semi-Kaehler metric tensor g of index 2s on M is given by

g = 2
∑
j

εjωj ⊗ ωj .

Then {Uj} is a local unitary frame field with respect to this metric and
{ωj} is a local dual frame field to {Uj}, which consists of complex-valued
1-forms of type (1, 0) on M . Moreover ω1, . . . , ωn, ω1, . . . , ωn are linearly
independent, and {ωj} are the canonical forms on M . It follows from (3.2)
and Cartan’s lemma that the exterior derivative of (3.2) gives rise to

(3.3) ωxi =
∑
j

εjhij
xωj , hij

x = hji
x.

The quadratic form α =
∑

i,j,x εiεjεxhij
xωi ⊗ ωj ⊗ Ux with values in the

normal bundle NM of M in M ′ is called the second fundamental form of
the submanifold M . The structure equations for M are similarly given by

(3.4)

dωi +
∑
j

εjωij ∧ ωj = 0, ωij + ωji = 0,

dωij +
∑
k

εkωik ∧ ωkj = Ωij , Ωij =
∑
k,l

εkεlRījkl̄ωk ∧ ωl.

Moreover,

(3.5) dωxy +
∑
z

εzωxz ∧ ωzy = Ωxy, Ωxy =
∑
k,l

εkεlRx̄ykl̄ωk ∧ ωl,

where Ωxy is the normal curvature form of M . For the Riemannian curvature
tensors R and R′ of M and M ′ respectively, it follows from (3.1), (3.3) and
(3.4) that we have the Gauss equation

(3.6) Rījkl̄ = R′ījkl̄ −
∑
x

εxhjk
xhil

x.

Also, in view of (3.3) and (3.5),

(3.7) Rx̄ykl̄ = R′x̄ykl̄ +
∑
r

εrhkr
xhrl

y.

The components Sij̄ of the Ricci tensor S and the scalar curvature r of M
are given by

Sij̄ =
∑
k

εkR
′
j̄ikk̄ − hij̄

2,(3.8)

r = 2
(∑

k,j

εkεjR
′
k̄kjj̄ − h2

)
,(3.9)

where hij̄
2 = hj̄i

2 =
∑

x,r εxεrhir
xhrj

x and h2 =
∑

j εjhjj̄
2.



HYPERSURFACES IN SEMI-KAEHLER SPACE FORMS 47

Next, the components hijk
x and hijk̄

x of the covariant derivative of the
second fundamental form on M are given by

(3.10)
∑
k

εk(hijk
xωk + hijk̄

xωk)

= dhij
x −

∑
k

εk(hkj
xωki + hik

xωkj) +
∑
y

εyhij
yωxy.

Substituting dhij
x from this definition into the exterior derivative of (3.3)

and using (3.1)–(3.4) and (3.8), we have

(3.11) hijk
x = hikj

x, hijk̄
x = −R′x̄ijk̄.

Similarly the components hijkl
x and hijkl̄

x (resp. hijk̄l
x and hijk̄l̄

x) of the
covariant derivative of hijk

x (resp. hijk̄) can be expressed as

(3.12)
∑
l

εl(hijkl
xωl + hijkl̄

xωl)

= dhijk
x −

∑
l

εl(hljk
xωli + hilk

xωlj + hijl
xωlk) +

∑
y

εyhijk
yωxy,

(3.13)
∑
l

εl(hijk̄l
xωl + hijk̄l̄

xωl)

= dhijk̄
x −

∑
l

εl(hljk̄
xωli + hilk̄

xωlj + hijl̄
xωlk) +

∑
y

εyhijk̄
yωxy.

Taking the exterior derivative of (3.10) and using the properties d2 = 0,
(3.4), (3.5), (3.8), (3.10) and (3.11), we have the following Ricci formula for
the second fundamental form:

hijkl
x = hijlk

x, hijk̄l̄
x = hijl̄k̄

x,(3.14)

hijkl̄
x − hijl̄kx =

∑
r

εr(Rl̄kir̄hrj
x +Rl̄kjr̄hir

x)−
∑
y

εyRx̄ykl̄hij
y.(3.15)

In particular, let the ambient space M ′ be an (n + p)-dimensional semi-
Kaehler space form Mn+p

s+t (c) of constant holomorphic sectional curvature c
and of index 2(s+ t) (0 ≤ s ≤ n, 0 ≤ t ≤ p). Then we get

Rījkl̄ =
c

2
εjεk(δijδkl + δikδjl)−

∑
x

εxhjk
xhil

x,(3.16)

Sij̄ =
(n+ 1)c

2
εiδij − hij̄2,(3.17)

r = n(n+ 1)c− 2h2,(3.18)

hijk̄
x = 0,(3.19)
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hijkl̄
x =

c

2
(εkhij

xδkl + εihjk
xδil + εjhki

xδjl)(3.20)

−
∑
r,y

εrεy(hri
xhjk

y + hrj
xhki

y + hrk
xhij

y)hrl
y.

For brevity, a tensor hij̄
2m and a function h2m on M for any integer m (≥ 2)

are introduced as follows:

hij̄
2m =

∑
i1,...,im−1

εi1 · · · εim−1hīi1
2hi1 ī2

2 · · ·him−1j̄
2, h2m =

∑
i

εihīi
2m.

In particular, if M is a hypersurface, then a tensor hij
2m+1 on M is intro-

duced by
hij

2m+1 =
∑
k

εkhik̄
2mhkj .

4. Examples of indefinite Einstein complex submanifolds. We
give some examples of indefinite Einstein submanifolds of an indefinite com-
plex space form:

Example 4.1. The indefinite Euclidean space Cn
s of index 2s is a totally

geodesic complex hypersurface in Cn+1
s or Cn+1

s+1 in a natural way.

Example 4.2. For an indefinite complex projective space CPn+1
s (c) of

index 2s and of constant holomorphic sectional curvature c, if {z1, . . . , zs,
zs+1, . . . , zn+2} is the usual homogeneous coordinate system of CPn+1

s (c),
then for each fixed j, the equation zj = 0 defines a totally geodesic complex
hypersurface identifiable with CPn

s (c) or CPn
s−1(c) according to whether

s + 1 ≤ j ≤ n + 2 or 1 ≤ j ≤ s. By taking into account that CH n
s (−c)

is obtained from CPn
n−s(c) by reversing the sign of its indefinite Kaehler

metric, the previous discussion shows that CH n
s (−c) is a totally geodesic

complex hypersurface in both CH n+1
s (−c) and CH n+1

s+1 (−c) (see Montiel and
Romero [MR]).

Example 4.3. Let Qn
s be the indefinite complex hypersurface in

CPn+1
s (c) defined by the equation

−
s∑

j=1

zj
2 +

n+2∑
k=s+1

zk
2 = 0

in the homogeneous coordinate system of CPn+1
s (c). Then Qn

s is a complete
indefinite complex hypersurface of index 2s, and moreover, for reasons sim-
ilar to those in Kobayashi and Nomizu [KN, Chapter 11, Example 10.6], it
is Einstein and its Ricci tensor S satisfies S = ncg/2 (see also Romero [R1]
and [R3]). This is called an indefinite complex quadric.

Note that Qn
s can also be constructed as an indefinite Einstein complex

hypersurface in CH n+1
s+1 (−c).
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Example 4.4. Szabó [Sz] showed that a complete Einstein complex hy-
persurface in a complex space form Mn+1(c) is totally geodesic or c > 0.
In the latter case M is locally congruent to the complex quadric Qn. In
Example 4.3 we can see that the situation of Qn

s is completely different from
those of the definite cases.

Remark 4.5. Indefinite Einstein complex hypersurfaces in an indefinite
complex space form have been investigated in detail by Montiel and Romero
[MR] and in Romero’s surveys [R2] and [R5].

Example 4.6. We consider an indefinite complex hypersurface in
CP2n+1

n+1 (c) defined by the equation

n+1∑
j=1

zjzn+1+j = 0

in the homogeneous coordinate system of CP2n+1
n+1 (c). It is a complete com-

plex hypersurface of index 2n, denoted by Q2n∗
n . It is easily seen that its

Ricci tensor S satisfies S = (n+ 1)cg, and hence it is Einstein (see [KN]).

5. Weyl semi-symmetric complex hypersurfaces. This section is
concerned with Weyl semi-symmetric complex hypersurfaces in a semi-
Kaehler space form. Let M be an n-dimensional semi-Kaehler hypersur-
face of index 2s in an (n + 1)-dimensional semi-Kaehler space form M ′ =
Mn+1

s+t (c), 0 ≤ s ≤ n, t = 0 or 1, of index 2(s + t) and of constant holo-
morphic sectional curvature c. We denote by R the Riemannian curvature
tensor on M .

Let W be the Weyl curvature tensor with components Wījkl̄ defined by

(5.1) Wījkl̄ = Rījkl̄ − rεjk(δjiδkl + δkiδjl)/(2n(n+ 1)).

The hypersurface M is said to be Weyl semi-symmetric if the Weyl
curvature tensor W satisfies

(5.2) R(X,Y )W = 0, X, Y ∈ TM.

It can be easily verified that (5.2) is equivalent to

(5.3) Wījkl̄mp̄ −Wījkl̄p̄m = 0.

In fact, by applying the Ricci identity to W , we have

Wījkl̄mp̄ −Wījkp̄lm̄

= −
∑
r

εr(Rk̄rjīWr̄lmp̄ −Rr̄mjīWk̄lrp̄ +Rp̄rjīWk̄lmr̄ −Rr̄ljīWk̄rmp̄).

For a local unitary frame {Uj} on M , the components Rh̄ijk̄ of the Rieman-
nian curvature tensor R and the components Wh̄ijk̄ of the Weyl curvature
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tensor W are given by

R(Ui, U j)Uk =
∑
r

εrRr̄kij̄Ur, R(Ui, U j)Uk =
∑
r

εrRrk̄ij̄U r,

W (Ui, U j)Uk =
∑
r

εrWr̄kij̄Ur, W (Ui, U j)Uk =
∑
r

εrWrk̄ij̄U r.

Accordingly, we have

(R(Uj , U i)W )(Um, Up, Ul)

= R(Uj , U i)W (Um, Up)Ul −W (R(Uj , U i)Um, Up)Ul

−W (Um, R(Uj , U i)Up)Ul −W (Um, Up)R(Uj , U i)Ul

=
∑
r

εr{Wr̄lmp̄R(Uj , U i)Ur −Rr̄jlm̄W (Ur, Up)Ul

+Rp̄rjīW (Um, U r)Ul −Rr̄ljīW (Um, Up)Ur}

=
∑
r,k

εrεk(Wr̄lmp̄Rk̄rjī −Rr̄mjīWk̄lrp̄ +Rp̄rjīWk̄lmr̄ −Rr̄ljīWk̄rmp̄)Uk.

So (5.2) is equivalent to

(5.4)
∑
r

εr(Rk̄rjīWr̄lmp̄ −Rr̄mjīWk̄lrp̄ +Rp̄rjīWk̄lmr̄ −Rr̄ljīWk̄rmp̄) = 0.

On the other hand, by (3.16), (3.18) and (5.1) we have

(5.5) Wījkl̄ =

{
c

2
εjk(δjiδkl + δikδjl)− hjkhil

}
− {n(n+ 1)c− 2h2}εjk(δjiδkl + δikδjl)/(2n(n+ 1))

= −hjkhil +
h2

n(n+ 1)
εjk(δjiδkl + δikδjl).

By substituting (3.16) and (5.5) into (5.4), we obtain∑
r

εr

[
−
{
c

2
εjr(δjiδrk + δirδjk)− hjrhik

}{
−hlmhrp

+
h2

n(n+ 1)
εlm(δrlδmp + δrmδlp)

}
+

{
c

2
εjl(δjiδlr+δilδjr)−hjlhir

}{
−hrmhkp+

h2

n(n+1)
εrm(δkrδmp+δkmδrp)

}
+

{
c

2
εjm(δjiδmr+δimδjr)−hjmhir

}{
−hlrhkp+

h2

n(n+1)
εlr(δklδrp+δkrδlp)

}
−
{
c

2
εjr(δjiδrp+δirδjp)−hjrhip

}{
−hlmhkr+

h2

n(n+1)
εlm(δklδmr+δkmδlr)

}]
= 0,
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which implies that

(5.6) 2(hjp̄
2hik + hjk̄

2hip)hlm − 2(hmī
2hjl + hl̄i

2hjm)hkp

− c(εjδjkhlmhip − εlδlihjmhkp − εmδmihljhkp + εjδjphlmhki) = 0.

Theorem 5.1. Let M be an n-dimensional Weyl semi-symmetric com-
plex hypersurface of index 2s in Mn+1

s+t (c), 0 ≤ s ≤ n, t = 0 or 1, c 6= 0.
Then M is totally geodesic with r = n(n + 1)c, or Einstein with r = n2c,
where r denotes the scalar curvature.

Proof. Since RW = 0, equation (5.6) holds. Setting j = p in (5.6),
multiplying the equation by εj and summing over j we get

(5.7) 2(h2hik + hik
3)hlm − 2(hmī

2hlk̄
2 + hl̄ihmk̄

2)

− c{(n+ 1)hlmhik − εlδlihmk̄
2 − εmδmihlk̄

2} = 0,

Furthermore, setting k = l in (5.7), multiplying the equation by εk and
summing over k, we get

(5.8) c(nhmī
2 − h2εmδmi) = 0,

which implies that M is Einstein, because of the relation c 6= 0 and (3.17).

Next, we investigate the scalar curvature r of M . As hmī
2 =(h2/n)εmδmi,

equation (5.7) is reduced to

(5.9) (2h2 − nc){n(n+ 1)hijhik − h2εlm(δmiδlk + δliδmk)} = 0.

Since M is Einstein, h2 is a constant. So, first consider the case where
2h2−nc = 0 on M , so that the squared norm h2 of the second fundamental
form is (n/2)c. Then by using (3.17) and (3.18) we find that M is Einstein
with constant scalar curvature r = n2c.

Secondly, assume that 2h2 − nc 6= 0 on M . Then (5.9) gives

(5.10) n(n+ 1)hijhik − h2εlm(δmiδlk + δliδmk) = 0.

Multiplying (5.10) by εkhkt and summing over k, we get

n(n+ 1)ht̄i
2hlm − h2(εmδmiδlt + εlδliδmt) = 0.

Using the above equation and the relation hmī
2 = (h2/n)εmδmi, we obtain

h2{(n+ 1)εlδtihlm − (εmδmihlt + εlδlihmt)} = 0.

Setting t = i, multiplying by εt and summing over t gives

(n+ 2)(n− 1)h2hlm = 0.

Thus we get h2 = 0 on M , from which by (5.10) it follows that hij = 0 on M .
Hence M is totally geodesic with r = n(n+1)c, where we have used (3.18).

Now let us recall the following result of Nakagawa and Takagi [NT].
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Theorem B. Let M be a complete Kaehler submanifold imbedded into
CPN with parallel second fundamental form. If M is irreducible, then M is
congruent to one of the following Kaehler submanifolds imbedded into CPN

(N = n+ p) with parallel second fundamental form:

CPn = SU(n+ 1)/S(U(n)× U(1)), Qn = SO(n+ 2)/SO(n)× SO(2),

SU(r + 2)/S(U(r)× U(2)) (r ≥ 3), SO(10)/U(5), E6/Spin(10)× T,

where U(n), SU(n) and SO(n) denote the unitary group, the special uni-
tary group and the special orthogonal group of order n respectively, and E6,
Spin(10) and T denote the exceptional group, the spin group, and the torus
group respectively. If M is reducible, then M is congruent to (CPn1×CPn2 , f)
for some n1 and n2 with dimM = n1 + n2, where

f : CPn1 × CPn2 → CPn1+n2+n1n2

is the Kaehler imbedding. The corresponding local version is also true.

Naturally, a Kaehler submanifold with parallel second fundamental form
is locally symmetric. So it is semi-symmetric, and hence by (5.1) and (5.4) it
is Weyl semi-symmetric. Now, by using Theorem 5.1 and Theorem B we give
a complete classification of Weyl semi-symmetric hypersurfaces in complex
projective space:

Theorem 5.2. Let M be an n-dimensional complex hypersurface in
CPn+1. If M is Weyl semi-symmetric, then it is locally congruent to a
complex quadric Qn or to CPn.

Proof. More generally, let M be an n-dimensional complex hypersurface
in an (n+ 1)-dimensional complex space form Mn+1(c), c 6= 0. Assume that
M is Weyl semi-symmetric. Then hij̄

2 = h2δij/n, and so M is Einstein by
Theorem 5.1. Accordingly, the scalar curvature r is constant on M . Then
by (3.18) we find that h2 is constant. Since M is hypersurface, we see that
hij̄

2 =
∑

r hirhrj .

Differentiating this relation covariantly, by (3.11), (3.19) and the fact
that h2 is constant, we obtain

∑
r hikrhrj = 0. Since h2 = nc/2 if M is

not totally geodesic, we see that hijk = 0, which means that the second
fundamental form of M is parallel.

Combining this result with Theorem B and considering the codimension
p = 1, we complete the proof.

Also, in the proof of Theorem 5.1, if we consider the two cases concerned
with the length of the second fundamental form h2, we can easily verify the
following:
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Corollary 5.3. Let M be an n-dimensional complex hypersurface in
a complex hyperbolic space Hn+1(c), c < 0. If M is Weyl semi-symmetric,
then it is totally geodesic.

Proof. When M satisfies 2h2 = nc for c < 0, the squared norm h2 =∑
i,j hij h̄ij of M in Mn+1(c), c < 0, cannot be positive definite. This gives

us a contradiction.

By using the same method as in the proof of Corollary 5.3 we obtain:

Corollary 5.4. Let M be an n-dimensional space-like complex hyper-
surface in an indefinite complex space form Mn+1

1 (c), c > 0. If M is Weyl
semi-symmetric, then it is totally geodesic.

6. Projective semi-symmetric complex hypersurfaces. Let M be
an n-dimensional complex hypersurface of index 2s in an (n+1)-dimensional
semi-Kaehler space form M ′ = Mn+1

s+t (c), 0 ≤ s ≤ n, t = 0 or 1, of index
2(s+t) and of constant holomorphic sectional curvature c. We choose a local
field {Uj} of unitary frames on M . Let {ωj} be the dual frame fields. Then
the indefinite Kaehler metric tensor g of M is given by

g = 2
∑
j

εjωj ⊗ ω̄j .

The connection forms on M are denoted by ω = {ωij}.
Let M be an indefinite Kaehler manifold with two indefinite Kaehler

metrics g and g′. Then the corresponding connection forms ω and ω′ are
projectively related if there exists a 1-form p such that the coefficients of the
connection forms ω and ω′ satisfy

ω′ij(Uk) = ωij(Uk) + pjεkδki + pkεjδji.

It can be easily seen that their Riemannian curvature tensors satisfy

R′ījkl̄ = Rījkl̄ + εjδjipkl̄ + εkδkipjl̄.

The corresponding projective curvature tensors G and G′ have components
defined by

Gījkl̄ = Rījkl̄ −
1

n+ 1
(εjδjiSkl̄ + εkδkiSjl̄),(6.1)

G′ījkl̄ = R′ījkl̄ −
1

n+ 1
(εjδjiS

′
kl̄ + εkδkiS

′
jl̄).(6.2)

By (6.1), we have

S′kl̄ =
∑
r

εrR
′
r̄rkl̄ = Skl̄ + (n+ 1)pkl̄, S′jl̄ = Sjl̄ + (n+ 1)pjl̄.
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From (6.1), (6.2) and the above equations, we get

G′ījkl̄ = (Rījkl̄ + εjδjipkl̄ + εkδkipjl̄)−
1

n+ 1
εjδji{Skl̄ + (n+ 1)pkl̄}

− 1

n+ 1
εkδki{Sjl̄ + (n+ 1)pjl̄}

= Rījkl̄ −
1

n+ 1
(εjδjiSkl̄ + εkδkiSjl̄) = Gījkl̄,

so G is the same for the two projectively related connections ω and ω′.
One calls G the complex projective curvature tensor of an indefinite Kaehler
manifold (M, g).

We say that a complex hypersurface M of index 2s is projective semi-
symmetric if R(X,Y )G = 0 for any vector fields X,Y on M. As can be
easily seen (cf. Goldberg [G] and Yano and Bochner [YB] in the definite
case), an indefinite Kaehler manifold M with vanishing G is of constant
holomorphic sectional curvature. If M is Einstein, the projective curvature
tensor coincides with the Weyl curvature tensor. Moreover, it can be easily
seen that the condition R(X,Y )R = 0 is equivalent to R(X,Y )G = 0 for
complex hypersurfaces M in semi-Kaehler space forms M ′.

Theorem 6.1. Let M be an n-dimensional projective semi-symmetric
complex hypersurface of index 2s in Mn+1

s+t (c), 0 ≤ s ≤ n, t = 0 or 1, c 6= 0.
Then M is totally geodesic with r = n(n + 1)c, or Einstein with r = n2c,
where r denotes the scalar curvature.

Proof. Since M is projective semi-symmetric,

(6.3) R(X,Y )G = 0, X, Y ∈ TM.

This is equivalent to

Gījkl̄mp̄ −Gījkl̄p̄m = 0.

By applying the Ricci identity to G, we have

(6.4)
∑
r

εr(−Rījrk̄Gr̄lmp̄ +Rījlr̄Gk̄rmp̄ +Rījmr̄Gk̄lrp̄ −Rījrp̄Gk̄lmr̄) = 0.

By (3.16) and (6.1) we get

(6.5) Gījkl̄ =

{
c

2
εjk(δjiδkl + δikδjl)− hjkhil

}
− 1

n+ 1

[
εjδji

{
(n+ 1)c

2
εkδkl − hkl̄2

}
+ εkδki

{
(n+ 1)c

2
εjδjl − hjl̄2

}]
= − 1

n+ 1
(εjδjihkl̄

2 + εkδkihjl̄
2)− hjkhil,

where hij̄
2 =

∑
k εkhikhkj as in Section 3.
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Now substituting (3.16) and (6.5) into (6.4), we obtain∑
r

εr
[
−
{
c
2εjr(δjiδrk + δirδjk)− hjrhik

}{
1

n+1(εlδlrhmp̄
2 + εmδmrhlp̄

2)

− hlmhrp
}

+
{
c
2εjl(δjiδlr +δilδjr)−hjlhir

}{
1

n+1(εrδrkhmp̄
2 +εmδmkhrp̄

2)−hrmhkp
}

+
{
c
2εjm(δjiδmr +δimδjr)−hjmhir

}{
1

n+1(εlδlkhrp̄
2 +εrδrkhlp̄

2)−hlrhkp
}

−
{
c
2εjr(δjiδrp+δirδjp)−hjrhip

}{
1

n+1(εlδlkhmr̄
2 +εmδmkhlr̄

2)−hlmhkr
}]
= 0,

which implies that

(6.6)
c

2(n+ 1)
{εlδliεmδmkhjp̄

2 + εmδmiεlδlkhjp̄
2 − εjδjpεlδlkhmī

2

− εjδjpεmδmkhl̄i
2}

+
1

n+ 1
{−εmδmkhjlhip

3 − εlδlkhjmhip3 + εlδlkhiphmj
3 + εmδmkhiphlj

3}

+
c

2
{εjδjkhlmhip − εlδlihjmhkp − εmδmihljhkp + εjδjphlmhki}

+ {−hikhlmhjp̄2 + hkphjlhmī
2 + hkphjmhl̄i

2 − hiphlmhjk̄2} = 0.

Setting i = m in (6.6), multiplying the equation by εm and summing over m,
we get

c

2(n+ 1)
{εlδlkhjp̄2 + nεlδlkhjp̄

2 − εjδjpεlδlkh2 − εjδjphlk̄2}

+
1

n+ 1
{−hjlhkp3 + hkphlj

3}+
c

2
{εjδjkhlp̄2− hjlhkp− nhljhkp + εjδjphlk̄

2}

+ {−hlk̄2hjp̄
2 + hkphjlh2 + hkphlj̄

3 − hlp̄2hjk̄
2} = 0,

where hij̄
3 =

∑
r,s εrεshirhrshsj as in Section 3. Setting p = j in the above

equation, multiplying the equation by εj and summing over j, we obtain

(6.7) hlk̄
2 =

h2

n
εlδlk,

which implies that M is Einstein, because of the relation c 6= 0 and (3.17).
Next, we investigate the scalar curvature r of M . Since hlk̄

2 = h2
n εlδlk,

equation (6.6) is reduced to

(6.8)
c

2n(n+ 1)
{εlδliεmδmkεjδjph2 + εmδmiεlδlkεjδjph2

− εjδjpεlδlkεmδmih2 − εjδjpεmδmkmεlδlih2}

+
c

2
{εjδjkhlmhip−εlδlihjmhkp−εmδmihljhkp+εjδjphlmhki}

+
1

n
{−hikhlmεjδjph2 +hkphjlεmδmih2 +hkphjmεlδlih2−hiphlmεjδjkh2} = 0.
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Furthermore, setting p = j in (6.8), multiplying the equation by εj and
summing over j, we get

(6.9) (2h2 − nc){(n+ 1)hlmhik − εmδmihlk̄
2 − εlδlihmk̄

2} = 0.

Since M is Einstein, h2 is a constant. So, first consider the case where
2h2−nc = 0 on M , so that the squared norm h2 of the second fundamental
form is equal to (n/2)c. Then in this case by (3.18) we know that M is
Einstein with constant scalar curvature r = n2c.

Secondly, consider the case where 2h2−nc 6= 0 on M , and so (6.9) gives

(6.10) (n+ 1)hlmhik − εmδmihlk̄
2 − εlδlihmk̄

2 = 0,

from which in view of (6.7) it follows that

(6.11) (n+ 1)hlmhik −
1

n
εmδmiεlδlkh2 −

1

n
εlδliεmδmkh2 = 0.

Setting n = k in (6.11), multiplying the equation by εk and summing over k,
we obtain h2hlm = 0. Thus h2 = 0 on M , from which by (6.11) it follows
that hlm = 0 on M . Hence M is totally geodesic with scalar curvature
r = n(n + 1)c, where we have used (3.18). This completes the proof of
Theorem 6.1.

In particular, we consider the case where M is a projective semi-sym-
metric complex hypersurface in CPn+1. As an application of Theorem 6.1
and Theorem B we get:

Theorem 6.2. Let M be an n-dimensional complex hypersurface in
CPn+1. If M is projective semi-symmetric, then it is locally congruent to a
complex quadric Qn or to CPn.

Also, as in the proof of Theorem 6.1, we can easily verify the following:

Corollary 6.3. Let M be an n-dimensional complex hypersurface in a
complex hyperbolic space Hn+1(c), c < 0. If M is projective semi-symmetric,
then it is totally geodesic.

Proof. When M is Einstein in the proof of Theorem 6.1 and 2h2 = nc
for c < 0, the non-negativity of the squared norm of the second fundamental
form h2 gives us a contradiction. So this case cannot occur.

By using the same method as in the proof of Corollary 6.3, we get

Corollary 6.4. Let M be an n-dimensional complex hypersurface in
an indefinite complex space form Mn+1

1 (c), c > 0. If M is projective semi-
symmetric, then it is totally geodesic.
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7. Conformal semi-symmetric complex hypersurfaces. This sec-
tion is devoted to the investigation of conformal semi-symmetric hypersur-
faces in complex space forms.

Let M be an n-dimensional semi-Kaehler hypersurface of index 2s in an
(n + 1)-dimensional semi-Kaehler space form M ′ = Mn+1

s+t (c), 0 ≤ s ≤ n,
t = 0 or 1, of index 2(s+t) and of constant holomorphic sectional curvature c.
We denote by R the Riemannian curvature tensor on M .

Recall that the conformal curvature tensor H on M has components

(7.1) Hījkl̄ = Rījkl̄ −
1

2(n+ 1)
(εkSījδkl + εjSīkδjl + εjSl̄kδij + εkSl̄jδik).

As is easily seen, H is a curvature-like tensor on M .

The hypersurface M is said to be conformal semi-symmetric if

(7.2) R(X,Y )H = 0, X, Y ∈ TM.

It is easily verified that (7.2) is equivalent to

(7.3) Hījkl̄mp̄ −Hījkl̄p̄m = 0.

In fact, by applying the Ricci identity to H, we have

(7.4)
∑
r

εr(−Rījrk̄Hr̄lmp̄ +Rījlr̄Hk̄rmp̄ +Rījmr̄Hk̄lrp̄ −Rījrp̄Hk̄lmr̄) = 0.

From (3.16) and (7.1) we get

Hījkl̄ =
1

2(n+ 1)
{εj(δjlhkī2 + δjihkl̄

2) + εk(δklhjī
2 + δkihjl̄

2)}(7.5)

− hjkhil.

By substituting (3.16) and (7.5) into (7.4), we obtain∑
r

εr
[{

c
2εjr(δjiδrk + δirδjk)− hjrhik

}(
1

2(n+1)

{
εl(δlphmr̄

2 + δlrhmp̄
2)

+ εm(δmphlr̄
2 + δmrhlp̄

2)
}
− hlmhrp

)
−
{
c
2εjl(δjiδlr + δilδjr)− hjlhir}

(
1

2(n+1)

{
εr(δrphmk̄

2 + δrkhmp̄
2)

+ εm(δmphrk̄
2 + δmkhrp̄

2)
}
− hrmhkp

)
−
{
c
2εjm(δjiδmr + δimδjr)− hjmhir}

(
1

2(n+1)

{
εl(δlphrk̄

2 + δlkhrp̄
2)

+ εr(δrphlk̄
2 + δrkhlp̄

2)
}
− hlrhkp

)
+
{
c
2εjr(δjiδrp + δirδjp)− hjrhip}

(
1

2(n+1){εl(δlrhmk̄
2 + δlkhmr̄

2)

+ εm(δmrhlk̄
2 + δmkhlr̄

2)
}
− hlmhkr

)]
= 0.

From this, after canceling some terms in each formula on the left side, we
arrive at
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(7.6) − c
4(n+1){εjδjk(εlδlphmī

2 + εlδlihmp̄
2 + εmδmphl̄i

2 + εmδmihlp̄
2)}

+ 1
2(n+1){εlδlphikhmj

3 + hjlhikhmp̄
2 + εmδmphikhlj

3 + hjmhikhlp̄
2}

+ c
2εjδjkhlmhip − hjp̄

2hlmhik

+ c
4(n+1){εlδil(εjδjphmk̄

2 + εjδjkhmp̄
2 + εmδmphjk̄

2 + εmδmkhjp̄
2)}

− 1
2(n+1){εmδmphjlhik

3 + hjlhiphmk̄
2 + εmδmkhjlhip

3 + hjlhikhmp̄
2}

− c
2εlδilhjmhkp + hmī

2hjlhkp

+ c
4(n+1){εmδmi(εlδlphjk̄

2 + εlδlkhjp̄
2 + εjδjphlk̄

2 + εjδjkhlp̄
2)}

− 1
2(n+1){εlδlphjmhik

3 + hjmhiphlk̄
2 + εlδlkhjmhip

3 + hjmhikhlp̄
2}

− c
2εmδmihljhkp + hl̄i

2hjmhkp

− c
4(n+1){εjδjp(εlδlihmk̄

2 + εlδlkhmī
2 + εmδmihlk̄

2 + εmδmkhl̄i
2)}

+ 1
2(n+1){εlδlkhiphmj

3 + hjmhiphlk̄
2 + εmδmkhiphjl

3 + hjlhiphmk̄
2}

+ c
2εjδjphlmhki − hjk̄

2hlmhip = 0.

From this we deduce

Theorem 7.1. Let M be an n-dimensional conformal semi-symmetric
complex hypersurface of index 2s in Mn+1

s+t (c), 0 ≤ s ≤ n, t = 0 or 1, c 6= 0.
Then M is totally geodesic with r = n(n + 1)c, or Einstein with r = n2c,
where r denotes the scalar curvature.

Proof. Since R(X,Y )H = 0 for any X,Y on M , equation (7.6) holds.
Setting p = j in (7.6), multiplying the equation by εj and summing over j,
we get

− c

4(n+ 1)
{(2n+ 1)(εlδlihmk̄

2 + εmδmihlk̄
2) + (n+ 1)(εlδlkhmī

2 + εmδmkhl̄i
2)

− (εlδliεmδmk + εmδmiεlδlk)h2}+
1

(n+ 1)
(hikhlm

3 − hlmhik
3
)

+
c

2
(n+ 1)hlmhki + hl̄i

2hmk̄
2 − h2hlmhik + hlk̄

2hmī
2 − hlmhki

3
= 0.

Furthermore, setting l = k in the above equation, multiplying the equation
by εk and summing over k, we get

(7.7) c(nhmī
2 − h2εmδmi) = 0,

which implies that M is Einstein, because of c 6= 0 and (3.17).
Now, we investigate the scalar curvature r of M . As hmī

2 = (h2/n)εmδmi,
equation (7.6) is reduced to

(7.8) nc{εjδjkhlmhip − εlδlihjmhkp − εmδmihljhkp + εjδjphlmhki}
+ 2h2{−εjδjphlmhik + εmδmihjlhkp + εlδlihjmhkp − εjδjkhlmhip} = 0.
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Setting p = j in the above equation, multiplying the equation by εj and
summing over m, we have

(7.9) (2h2 − nc){(n+ 1)hlmhik − εlδlihmk̄
2 − εmδmihlk̄

2} = 0.

Since M is Einstein, h2 is a constant. So, first consider the case where
2h2 − nc = 0 on M ; then the squared norm h2 of the second fundamental
form is (n/2)c. In this case by (3.18) we know that M is Einstein with
constant scalar curvature r = n2c.

Secondly, assume that 2h2 − nc 6= 0 on M . Then (7.9) gives

(7.10) (n+ 1)hlmhik − εlδlihmk̄
2 − εmδmihlk̄

2 = 0.

Multiplying (7.10) by εkhkt and summing over k, we get

(7.11) (n+ 1)hlmht̄i
2 − εlδlihmt

3 − εmδmihlt
3 = 0,

from which by (7.7) it follows that

(7.12) (n+ 1)hlmεtδtih2 − εlδlihmth2 − εmδmihlth2 = 0.

Setting t = i in the above equation, multiplying the equation by εt and
summing over t, we get

(n+ 2)(n− 1)h2hlm = 0.

Thus h2 = 0 on M , from which in view of (7.10) it follows that hij = 0 on M .
In other words, M is totally geodesic with scalar curvature r = n(n + 1)c,
where we have used (3.18).

Remark 7.2. If M is Einstein, then M is semi-symmetric if and only if
M is conformal semi-symmetric.

In particular, we consider the case where M is a conformal semi-sym-
metric complex hypersurface in CPn+1. As an application of Theorem 7.1
and Theorem B we obtain:

Theorem 7.3. Let M be an n-dimensional complex hypersurface in
CPn+1. If M is conformal semi-symmetric, then it is locally congruent to
a complex quadric Qn or to CPn.

Also, as in the proof of Theorem 7.1, by using the same method as in
Corollaries 5.3, 6.3 for an Einstein hypersurface M in Mn+1(c), c < 0, satis-
fying 2h2 = nc, we arrive at a contradiction, because the squared norm h2 is
always non-negative. So we can easily verify the following:

Corollary 7.4. Let M be an n-dimensional complex hypersurface in a
complex hyperbolic space Hn+1(c), c < 0. If M is conformal semi-symmet-
ric, then it is totally geodesic.

By applying the same method to space-like hypersurfaces with time-like
normal direction, we can verify
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Corollary 7.5. Let M be an n-dimensional complex space-like hyper-
surface in an indefinite complex space form Mn+1

1 (c), c > 0. If M is con-
formal semi-symmetric, then it is totally geodesic.
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