COLLOQUIUM MATHEMATICUM

VOL. 150 2017 NO. 1

WEYL, PROJECTIVE AND CONFORMAL SEMI-SYMMETRIC
COMPLEX HYPERSURFACES IN SEMI-KAEHLER SPACE FORMS

BY

YOUNG SUK CHOI and YOUNG JIN SUH (Daegu)

Dedicated to the memory of Witold Roter

Abstract. The purpose of this paper is to introduce the notions of Weyl semi-sym-
metric, projective semi-symmetric and conformal semi-symmetric curvature tensor defined
on semi-Kaehler manifolds. Moreover, by using a new version of E. Cartan’s complex
exterior derivative method we give a complete classification of complex hypersurfaces M in
semi-Kaehler space forms M fft (¢) with Weyl semi-symmetric, projective semi-symmetric
or conformal semi-symmetric curvature tensor, respectively.

1. Introduction. There exist well-known curvature-like tensors asso-
ciated with various geometric structures on manifolds, analogous to the
Riemannian curvature tensor R defined on a Riemannian manifold. Ex-
amples are provided by the concircular, projective and conformal curvature
tensors (see Mantica and Suh [MSI]-[MS4], Roter [Rtl], [Rt2], Yano and
Bochner [YB]).

Besse’s book [Be] mentions three curvature-like tensors defined on
Kaehler manifolds, namely, the Weyl curvature tensor, the projective cur-
vature tensor and the conformal curvature tensor.

Let M be a complex n-dimensional semi-Kaehler manifold of index 2s,
0 < s < n, with semi-Kaehler connection V. We denote by T'M the tan-
gent bundle of M. Let T®M be the complexification of TM. Let T be a
quadrilinear mapping of T¢M x T¢ M x T M x T M into C satisfying the
curvature-like conditions

(a) T(X,Y,Z,U)=T(X,Y,Z,U),
(b) T(JX,JY,Z,U)=T(X,Y,JZ,JU) =T(X,Y, Z,U).
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Then T is said to be a curvature-like tensor on M. We will show that the

Weyl curvature tensor, the projective curvature tensor and the conformal

curvature tensor are curvature-like tensors on a semi-Kaehler manifold M.

First, as a complex version of the concircular curvature tensor, on a

semi-Kaehler manifold M we introduce a curvature-like tensor W, called
the Weyl curvature tensor, defined by
r

Wijki = Rijrr — m(n+ 1)

where R and r denote the curvature tensor and the scalar curvature respec-

tively.

€jk(05i0k1 + dir0j1)

Next, as a complex version of the projective curvature tensor, on a semi-
Kaehler manifold M we consider another kind of curvature-like tensor G,
called the complex projective curvature tensor, defined by

1
Gijhr = Rignr — 7 (€503 + ekdkiSr),

where S denotes the Ricci tensor of M.

Finally, let H be the conformal curvature tensor with components Hj;.r
defined by

Hfjk[ = Rijkf — (Ektsklsj; + 5j5jl5’k€ + 5j5ijsk[ + 5k5iijZ)-

1
2(n+1)
This was introduced by Bochner [Bo] as a formal analogue to the Weyl
conformal curvature tensor on a Riemannian manifold (see also Yano and
Bochner [YB]).

When M is Einstein, its Ricci tensor S satisfies the condition

T
Sﬁ = %ei&j.
In that case the complex projective curvature tensor G is equal to the Weyl
curvature tensor W. In Section 6 it is shown that G is the same for two
complex connections which are projectively related. Moreover, an indefinite
Kaehler manifold with vanishing complex projective curvature tensor G is of
constant holomorphic sectional curvature if M is Einstein (see Goldberg [G]
and Yano and Bochner [YB]).

Semi-symmetry for semi-Kaehler manifolds was introduced by Choi,
Kwon and Suh [CKSI]. A semi-Kaehler manifold M is said to be semi-
symmetric if it satisfies the condition R(X,Y)R = 0 for any vector fields X
and Y on M. This condition is weaker than the one characterizing locally
symmetric spaces, that is, VR = 0. Semi-symmetry for Riemannian spaces
was introduced by Szabé [Sz)].

In [CKSI] semi-symmetric complex hypersurfaces in semi-Kaehler space
forms M2 (c) are classified as follows:
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THEOREM A. Let M be an n-dimensional semi-symmetric complex hy-
persurface of index 2s in ngtl(c), 0<s<n,t=0o0r1l, c+#0. Then
M s totally geodesic with scalar curvature r = n(n + 1)c, or Einstein with

2
r =n’c.

A semi-Kaehler manifold M is said to be Weyl semi-symmetric (resp.
projective semi-symmetric, conformal semi-symmetric) if the Weyl curva-
ture tensor W (resp. projective curvature tensor G, conformal curvature
tensor H) satisfies the condition R(X,Y)W = 0 (resp. R(X,Y)G = 0,
R(X,Y)H = 0) for any vector fields X and Y on M.

Now we introduce the notion of recurrent curvature-like tensors on semi-
Kaehler manifolds (see [MS1], [MS2] and [SK]).

The Weyl curvature tensor W (resp. the projective curvature tensor G,
the conformal curvature tensor H) is said to be recurrent if there exists a
1-form « such that VIW = a @ W (resp. VG =a® G, VH =a ® H).

In particular, when the 1-form « vanishes identically, the Weyl recurrence
condition is reduced to VW = 0, that is, M is Weyl symmetric. If M is
locally symmetric, that is, VR = 0, then its scalar curvature r is constant.
So we know that M is then Weyl symmetric, VIW = 0. Of course, M must
then also be Weyl semi-symmetric. For projective recurrence and conformal
recurrence, we have the corresponding results.

Moreover, it can be easily seen that a Kaehler manifold M with recurrent
Weyl curvature tensor W (resp. projective curvature tensor G, conformal
curvature tensor H) satisfies the second Bianchi identity. Then naturally, by
using the method given in Sections we can see that the recurrent Weyl
curvature tensor W (resp. projective curvature tensor GG, conformal curva-
ture tensor H) satisfies the Weyl semi-symmetry condition R(X,Y )W =0
(resp. projective semi-symmetry condition R(X,Y)G = 0, conformal semi-
symmetric condition R(X,Y)H = 0) for a Kaehler manifold M.

Thus, the property of Weyl semi-symmetry (resp. projective semi-sym-
metry, conformal semi-symmetry) is weaker than Weyl recurrence (resp.
projective recurrence, conformal recurrence). But it is an open problem
whether the properties of semi-symmetry, Weyl semi-symmetry, projective
semi-symmetry and conformal semi-symmetry of complex hypersurfaces in
semi-Kaehler space forms M S”ftl(c), ¢ # 0, are all equivalent or not.

In this connection, by using a new version of E. Cartan’s complex exterior
derivative method, we give a complete classification of Weyl semi-symmetric
complex hypersurfaces of index 2s in M ;ftl(c):

THEOREM 1. Let M be an n-dimensional Weyl semi-symmetric complex
hypersurface of index 2s in ngtl(c), 0<s<n,t=0o0rl,c+#0. Then
M is totally geodesic with scalar curvature r = n(n + 1)c, or Einstein with

2
r =n’c.
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From Theorem 1 we see that semi-symmetry is equivalent to Weyl semi-
symmetry for a complex hypersurface in a semi-Kaehler space form M ;ﬁl (c).

Though the Weyl curvature tensor W, the projective curvature ten-
sor G and the conformal curvature tensor H are mutually different as de-
fined above, surprisingly we will prove analogous results for semi-symmetric
Weyl, projective and conformal hypersurfaces in semi-Kaehler space forms
M ;‘j}l (c), ¢ # 0. Accordingly, we give a complete classification of projective
semi-symmetric and conformal semi-symmetric complex hypersurfaces in a
semi-Kaehler space form M"Y, (c):

THEOREM 2. Let M be an n-dimensional projective semi-symmetric
complex hypersurface of index 2s in M;Z:Ql(c), 0<s<mn,t=0orl,
¢ # 0. Then M is totally geodesic with scalar curvature r = n(n + 1)c, or

Einstein with r = n2c.

THEOREM 3. Let M be an n-dimensional conformal semi-symmetric
complex hypersurface of index 2s in M:j}l(c), 0<s<mn, t=0orl,
¢ # 0. Then M is totally geodesic with scalar curvature r = n(n + 1)c, or

Einstein with r = n’c.

2. Semi-Kaehler manifolds. This section is concerned with local for-
mulas for semi-Kaehler manifolds. Let M be a complex n-dimensional con-
nected indefinite Kaehler manifold of index 2s (n > 2, 0 < s < n), equipped
with a semi-Kaehler metric tensor g. Let {U;} be a local field of unitary
frames on an open set in M. Here and below, the small Latin indices j, k, . . .
run from 1 to n. We have g(Uj, Uy) = €;6x, where

¢, =9g(U;,U;j)=—1or1l accordingto 1<j<s or s+1<j<n.

In particular, if g is positive definite, then g(U;, Ux) = d;y.

Now, let {w; } be the dual coframe field to {U;}. Then {w;} ={w1,...,wn}
consists of complex-valued 1-forms of type (1,0) on M such that w;(Uy) =
€0k and {wj,w;} = {wi,...,wp,@1,...,wy,} are linearly independent. The
semi-Kaehler metric g of M can be expressed as g = 223‘ €jw; ® wj. As-
sociated with the frame field {U;}, there exist complex-valued 1-forms wjs,
which are usually called complex connection forms on M, which satisfy the
structure equations

(2.1) dw; + Z erwir A wi = 0, wij + Wy = 0,
k
(2.2) dwi]’ + Z €Wk N\ Wiy = Qij, _Qij = Z ekle{ijWk N @y,
k k.l
where ... = € - - and §2;; (resp. jok;) denote the components of the Rie-

mannian curvature form (resp. the Riemannian curvature tensor R) of M
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(see Barros and Romero [BR], Romero and Suh [RS], Kobayashi and No-
mizu [KN]).

The second equation of accounts for the skew-Hermitian symmetry
of £2;;, which is equivalent to the symmetry conditions

REij = Rjill?r
Moreover, by the exterior differentiation of the first and the third equations
of (2.1)), the first Bianchi identity

(2.3) ZEJ‘QU Nwj = 0
J
is obtained. It implies the further symmetry relations
(2~4) R%jki - REij = Rl’jki = Rij%-
Now, with respect to the frame field chosen above, the Ricci tensor S
of M can be expressed as follows:

(2.5) S = Z eij(Sﬁwi ®w; + ng@i & wj),

/[:7j
where S;; = >y exRpp; = S5 = Sj;. The scalar curvature r of M is also
given by

(2.6) r= 22@-5’]-5.
J

The semi-Kaehler manifold M is said to be Einstein if the Ricci tensor S
is given by

?“6,‘(5@' T

2.7 S.- = S=_g.
( ) 17 m ’ 2ng
The components Rz, and Ry, (resp. S, and S;53) of the covariant

derivative of the Riemannian curvature tensor R (resp. the Ricci tensor S)
are defined by

(2‘8) Z En(Rfjkl_nwn + R{jk[ﬁwn) = dREjkl_

- Z en(Rijpini + Rippqwnj + Bijniwnk + Rijrnn),
n

(2.9) Z Ek(Sijka + Sijl%@k) = dSij — Z Gk(Skjwki + Si];(f)kj).
k k
The second Bianchi identity
(2.10) d.Qij = Z €k(Q’Lk A\ Wgj — Wik A ij)
k
arises from the exterior differentiation of the first of the structure equa-
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tions ([2.2)). In fact,

inj = Z exd(wir A wkj) = Z ex (dwi N Wk — Wik A dwkj)
k

%
= Z{ (Qm - Z Emwil wm) A Wij — Wik A (ij — Zwkl A wlj)}
j ] 1

= Z ek (ik N Wiy — Wik, A ;)
k
where the first equality holds since d> = 0, the second one follows from
the fact that the complex connection form is a 1-form combined with the
properties of the exterior derivative, and the third one is derived from the

structure equations (2.1J).
We can regard {2 = (£2;;) and w = (w;;) as complex n X n matrices. Then

(2.10) can be rewritten as

(2.11) A2 =02 Nw—wA (2.

By straightforward calculation we obtain

(2.12) Bkt = Bijnis

and hence

(2.13) Sijr = Skji = Z €Rjp, 1i=2 Z Sik>

where the exterior differential d; of the scalar curva]‘zure r on M is given by
(2.14) dr = Z er(rwy + o).

l

Let M be an m-dimensional semi-Kaehler manifold of index 2¢ (0 <
g < m). A plane section P of the tangent space T, M of M at any point x is
said to be non-degenerate provided that g.|p is non-degenerate. It is easily
seen that P is non-degenerate if and only if it has a basis {X, Y} such that

g(X, X)Q(K Y) - g(X,Y)2 7& 0.

If the non-degenerate plane P is invariant under the complex structure J,
it is said to be holomorphic. For the non-degenerate plane P spanned by X
and Y in P, the sectional curvature K(P) is usually defined by

g(R(X, Y)Y, X)
g(Xv X)g(Yv Y) - 9<X7 Y)2.

The sectional curvature K (P) of the holomorphic plane P is called the
holomorphic sectional curvature, and denoted by H(P). The semi-Kaehler
manifold M is said to be of constant holomorphic sectional curvature if H(P)
has the same value for all holomorphic planes P at all points of M. Then
M is called a semi-Kaehler space form, and denoted by M;" (c) whenever it

K(P)=K(X,Y) =
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is of constant holomorphic sectional curvature ¢, of complex dimension m
and of index 2¢ (> 0).

A semi-Kaehler manifold of constant holomorphic sectional curvature
is called a semi-Kaehler space form. An n-dimensional semi-Kaehler space
form of constant holomorphic sectional curvature ¢ and of index 2s, 0 <
s < n, is denoted by Mj(c). The components R;;; of the Riemannian
curvature tensor R of M (c) are given by

(2.15) Ryjr = cejen(0ijon + dixdj) /2.

3. Semi-Kaehler submanifolds. This section is concerned with semi-
Kaehler submanifolds of semi-Kaehler manifolds. First of all, the basic
formulas for the theory of semi-Kaehler submanifolds are presented (see
Choi, Kwon and Suh [CKSI] and [CKS2], Romero and Suh [RS], Suh and
Yang [SY]).

Let M’ be an (n + p)-dimensional connected semi-Kaehler manifold of
index 2(s +1¢) (0 < s <mn, 0<t<p) with semi-Kaehler structure (¢, J').
Let M be an n-dimensional connected semi-Kaehler submanifold of M’ and
let g be the semi-Kaehler metric tensor of index 2s induced on M from ¢’'. We
can choose a local field {Ua} = {U;,U,} = {U1,...,Uyyp} of unitary frames
on an open set in M’ in such a way that, restricted to M, Uy,...,U, are
tangent to M and the others are normal to M. Here and below, the following
convention on the ranges of indices is used, unless otherwise stated:

AB,C,...=1,...,n,n+1,...,n+ p;
in5,kl,...=1,....,n;, =x,y,z,...=n+1,...,n+p.

Let {wa} = {wj,wy} be the dual frame fields. Then the semi-Kaehler metric
tensor ¢’ of M’ is given by ¢’ = 2 jcawa ® Wa, where {e4} = {ej,&y},
e4 = £1. The connection forms on M’ are denoted by {wap}. The canonical
forms w4 and the connection forms w4 p of the ambient space M’ satisfy the
structure equations

dwa + ZgBWAB ANwp =0, wap+wpa=0,
B

(3.1) dwap + Z ecwac ANwes = g,
c

QAB = ZECgDRIABCDWC NWp,
C,D

where (2, (resp. R';5.5) denote the components of the curvature form

(resp. the Riemannian curvature tensor R’) of M’. Restricting these forms
to the submanifold M, we have

(3.2) wy =0,
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and the induced semi-Kaehler metric tensor g of index 2s on M is given by
g= 2Z€jw]' ® wj.
J
Then {U;} is a local unitary frame field with respect to this metric and
{w;} is a local dual frame field to {U;}, which consists of complex-valued
1-forms of type (1,0) on M. Moreover wy,...,wy,&1,...,w, are linearly

independent, and {w;} are the canonical forms on M. It follows from (3.2)
and Cartan’s lemma that the exterior derivative of (3.2)) gives rise to

(33) Wy = Zsjhijmwj, hijr = hﬂr

The quadratic form o« = Z”x gi€jezhij*w; ® wj ® U, with values in the
normal bundle NM of M in M’ is called the second fundamental form of
the submanifold M. The structure equations for M are similarly given by

dw; + Z&jwi]’ Nwj = 0, wij +Wj; = 0,
J

(3.4)
dwij + Z ExWik N\ Wgj = Qij, Qz‘j = ngglRijkl_wk N wWj.
k k,l
Moreover,
(35)  dway+ Y Eatwrz Away = oy, ay = pgRyypqon AT,
z k,l

where (2, is the normal curvature form of M. For the Riemannian curvature

tensors R and R’ of M and M’ respectively, it follows from (3.1)), (3.3)) and
(3-4) that we have the Gauss equation

(3.6) R = Ukz Z[‘:m i hat”.

Also, in view of (3.3) and (3.5),

(37) Ra‘:yki = R;}yk[ + Z gThkrmﬁrly-
T

The components S;; of the Ricci tensor S and the scalar curvature r of M
are given by

(3.8) Sij = ng Jikk ij27
(3.9) r= 2(2 exei Ry — 2.
¥

where hz-f = h;f = Zxﬂ, 5335Thirxﬁrjx and ho = Zj 5jhj52.
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Next, the components h;;,* and h;;;* of the covariant derivative of the
second fundamental form on M are given by

(3.10) ng(hijkzwk + hij,fwk)

k
= dhijx — Z sk(hkj”wki + hikxwkj) + Z€yhiijxy.
k Y

Substituting dh;;* from this definition into the exterior derivative of (3.3)
and using (3.1)—(3.4) and (3.8)), we have

(3.11) hig® = higg™, g Tijk’

Similarly the components h;j® and h; ;" (vesp. b5 * and h;;5") of the
covariant derivative of h;;” (vesp. h;;z) can be expressed as

(3.12) Z é‘l(hijklxwl + hijkl—“wl)
!
= dh;j,” — Zgl(hljkxwli + hak wij + hiji"wik) + Z eyhiji¥way,
! y

l

= dh;" — Z eu(Pyj " wii + hy"wiy + higi" W) + Z eyhiji Way-
! v

Taking the exterior derivative of (3.10) and using the properties d?> = 0,
(13-4), (3.5, (3.8]), (3.10) and (3.11]), we have the following Ricci formula for

the second fundamental form:

(3.14) hiji”™ = higie”™,  hir” = hiie”s

(315)  hyjpt” — hii” =D er(Rigggphrs™ + Bpehin™) = > €y Ryypihis”
r )

In particular, let the ambient space M’ be an (n + p)-dimensional semi-
Kaehler space form M ;thp (c) of constant holomorphic sectional curvature c
and of index 2(s +t) (0 <s<mn, 0 <t <p). Then we get

c _

(3.16) Rfjkl_ = §€j5k(5ij5kl + 5ik5jl) — Z Exhjkwhilx,
(n+1)c

(3.17) Sij = T&&j - h¢32,

(3.18) r=mn(n+ 1)c— 2ho,

(3.19) hii" =0,
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c
(3.20) hijk[x = 5(5khijx5kl + Eihjkx(gil + 5jhkﬁ5jl)
- Z 5r5y(hrixhjky + hr‘jzhkiy + hrkmhijy)ﬁrly~
T?y
For brevity, a tensor hl-fm and a function hg,, on M for any integer m (> 2)
are introduced as follows:

2m _ , , 2 2. 2 _ 7, 2m
hig™™ = E Eiy i Mgy ", o hy, T hem = E gihg™".
i

115yl —1

In particular, if M is a hypersurface, then a tensor hiij‘H on M is intro-

duced by
hij2m+1 —_ Z Ekh1]:;2mhk] )
k

4. Examples of indefinite Einstein complex submanifolds. We
give some examples of indefinite Einstein submanifolds of an indefinite com-
plex space form:

EXAMPLE 4.1. The indefinite Euclidean space Cf' of index 2s is a totally
geodesic complex hypersurface in C?*! or C;‘jfll in a natural way.

EXAMPLE 4.2. For an indefinite complex projective space CP""!(c) of
index 2s and of constant holomorphic sectional curvature ¢, if {z1,..., zs,
Zst1,-- -, Znt2} is the usual homogeneous coordinate system of CP""!(c),
then for each fixed j, the equation z; = 0 defines a totally geodesic complex
hypersurface identifiable with CP7(c) or CP?_;(c) according to whether
s+1<j<n+2orl <j<s By taking into account that CH(—c)
is obtained from CP}'_.(c) by reversing the sign of its indefinite Kaehler
metric, the previous discussion shows that CH(—c) is a totally geodesic
complex hypersurface in both CH""!(—c) and CH Zill(—c) (see Montiel and
Romero [MR]).

ExXAMPLE 4.3. Let Q7 be the indefinite complex hypersurface in
CP"*1(c) defined by the equation

s n+2
DIV IR
7=1 k=s+1

in the homogeneous coordinate system of CP?1(c). Then Q7 is a complete
indefinite complex hypersurface of index 2s, and moreover, for reasons sim-
ilar to those in Kobayashi and Nomizu [KN| Chapter 11, Example 10.6], it
is Einstein and its Ricci tensor S satisfies S = ncg/2 (see also Romero [R1]
and [R3]). This is called an indefinite complex quadric.

Note that @7 can also be constructed as an indefinite Einstein complex
hypersurface in CH ?j_rll(—c)
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EXAMPLE 4.4. Szab6 [Sz] showed that a complete Einstein complex hy-
persurface in a complex space form M"*1(c) is totally geodesic or ¢ > 0.
In the latter case M is locally congruent to the complex quadric Q™. In
Example 4.3 we can see that the situation of Q)7 is completely different from
those of the definite cases.

REMARK 4.5. Indefinite Einstein complex hypersurfaces in an indefinite
complex space form have been investigated in detail by Montiel and Romero
[MR] and in Romero’s surveys [R2] and [R5].

EXAMPLE 4.6. We consider an indefinite complex hypersurface in

CP%T{I(C) defined by the equation

n+1

> Zjznt1j =0
j=1

2n+1
n+£
plex hypersurface of index 2n, denoted by Q>* . It is easily seen that its

Ricci tensor S satisfies S = (n + 1)cg, and hence it is Einstein (see [KN]).

in the homogeneous coordinate system of C'P (c). It is a complete com-

5. Weyl semi-symmetric complex hypersurfaces. This section is
concerned with Weyl semi-symmetric complex hypersurfaces in a semi-
Kaehler space form. Let M be an n-dimensional semi-Kaehler hypersur-
face of index 2s in an (n + 1)-dimensional semi-Kaehler space form M’ =
MS"EI(C), 0 <s<mn,t=0o0r1, of index 2(s + t) and of constant holo-
morphic sectional curvature c¢. We denote by R the Riemannian curvature
tensor on M.

Let W be the Weyl curvature tensor with components W7, defined by

(5.1) Wikt = Bijrr — €k (05i0kt + 6kidj1) /(2n(n + 1)).

The hypersurface M is said to be Weyl semi-symmetric if the Weyl
curvature tensor W satisfies

(5.2) RX,Y)W =0, X,YeTM.
It can be easily verified that (5.2) is equivalent to
(5.3) ijkfmﬁ - ijkl}?m =0.
In fact, by applying the Ricci identity to W, we have

W{jkimﬁ - Wijkﬁlm

= - Z ET(RETﬂWHmﬁ - RfijWElrﬁ + Rﬁ'rﬁWElmF - RFlﬂWl}’/‘mﬁ)'
r

For a local unitary frame {U;} on M, the components Ry, of the Rieman-
nian curvature tensor R and the components Wy, of the Weyl curvature
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tensor W are given by

R(U, Uj)Ux =Y _erRpi5Ur,  R(ULT,)Uy = ZarRr,;ﬁUT,

W(U;, U, Uk_zgr WiiiUr,  W(U,U; Uk—za

k:ng .
Accordingly, we have
(R(Ujaﬁi)w)(U Up U)
- W(Um7R( 7U ) ) ( U )R(Ujvﬁ')Ul
= Zer{WFlmp ( )U Rr]lm (Ura U )
+ RmeW(Um,UT)Ul — RyyiW (Un, U,)U,}
- Z €T€k rlmkaTjZ - erﬂWklrp + Rpr]szlmr RflijI}rmﬁ)Uk'

So is equlvalent to

Z 57"(R]}7~ﬁWFlmﬁ - Rfmj{Wl}lTﬁ + RﬁrﬁWElmF - RflngETmp) =0.
-

On the other hand, by (3.16), (3.18]) and (5.1)) we have

C _
(5.5) Wi = {2@1{(5]‘1‘% + 0irdj1) — hjkhil}

—{n(n+1)c —2ha}e ;i (0i0k + dirdji)/(2n(n + 1))
—hjkﬁil +

ha
m%‘k(‘sﬁ&kl + 0irj1)-
By substituting (3.16]) and ( into ( ., we obtain

C — _
Zsr |:{25jr(5ji5rk + 6ir0jk) — hjrhik}{hlmhrp

ha
+ mglm(érlém;} + 5rm5lp

C - - hg
{25jl(5ji5lr+5il5jr)_hjlhir}{_hrmhkp+7m_i_1)5rm(5kr mp+5k:m rp
+{ggjm((sjidmr+5im6jr)_hjmhir}{_hlrhkp+

C — —
igjr((sji(srp"i'éir(sjp) _hjrhip} {_hlmhkr

_|_

ha
+m5lm(5kl5mr+6km6lr :|

ho
mglr ((5kl5rp+6k'r5lp }
=0

)
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which implies that
(5.6)  2(hjp’haik + hjg" hip) him — 2(hyi* ht + hyg* Bm ) Py
- C(gj(sjkhlmﬁip — 5l5lihjmﬁkp — 5m5mihljﬁkp + gjéjphlmﬁk:i) =0.

THEOREM 5.1. Let M be an n-dimensional Weyl semi-symmetric com-

plex hypersurface of index 2s in M;E:}l(c), 0<s<n,t=0o0r1l,c#0.

Then M s totally geodesic with r = n(n + 1)c, or Einstein with r = n’c,

where r denotes the scalar curvature.

Proof. Since RW = 0, equation (5.6) holds. Setting j = p in (5.6)),
multiplying the equation by ¢; and summing over j we get

(5.7)  2(hohir + hi®Yhim — 2(Pyi Py + hyzhy,i?)
— c{(n + 1)hlmﬁik — 5l6lihm1}2 — Em(;mihugz} = 0,

Furthermore, setting k£ = [ in (5.7)), multiplying the equation by e and
summing over k, we get

(5.8) c(nhm;2 — hoemdmi) = 0,

which implies that M is Einstein, because of the relation ¢ # 0 and (3.17)).
Next, we investigate the scalar curvature r of M. As h,,;*> = (h2/n)emdmi,
equation (5.7)) is reduced to

(5.9) (2h2 — nc){n(n + 1)hijﬁik — hg&lm((smi(slk + 6l25mk)} =0.

Since M is Einstein, hs is a constant. So, first consider the case where
2hy —nc = 0 on M, so that the squared norm hy of the second fundamental
form is (n/2)c. Then by using (3.17) and (3.18]) we find that M is Einstein

with constant scalar curvature r = n2ec.

Secondly, assume that 2ho — nc # 0 on M. Then gives
(5.10) n(n + 1)hijhis — ho€im (Omidik + 01:0mk) = 0.
Multiplying by erhg: and summing over k, we get
n(n + Dhg*him — ha(emOmibis + €1016mt) = 0.
Using the above equation and the relation h,,;2 = (ha/n)&mdmi, we obtain
ho{(n + 1)eidtibum — (EmOmihus + €101ihmt) } = 0.
Setting t = ¢, multiplying by &; and summing over ¢ gives
(n+2)(n — 1)hahyy, = 0.

Thus we get hg = 0 on M, from which by (5.10)) it follows that h;; = 0 on M.
Hence M is totally geodesic with r = n(n+1)c, where we have used (3.18]). =

Now let us recall the following result of Nakagawa and Takagi [NT].
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THEOREM B. Let M be a complete Kaehler submanifold imbedded into
CPN with parallel second fundamental form. If M is irreducible, then M is
congruent to one of the following Kaehler submanifolds imbedded into CPN
(N = n + p) with parallel second fundamental form:

CP" =SU(n+1)/S(U(n) x U(1)), Q"= S80(n+2)/SO(n)x SO(2),
SU(r+2)/S(U(r) xU?2)) (r>3), SO(10)/U(5), E°%/Spin(10) x T,

where U(n), SU(n) and SO(n) denote the unitary group, the special uni-
tary group and the special orthogonal group of order n respectively, and Eg,
Spin(10) and T' denote the exceptional group, the spin group, and the torus
group respectively. If M is reducible, then M is congruent to (CP™ xCP™?, f)
for some ny and ny with dim M = ny + ns, where

f - CP™ x OP™ — CPn1+n2+n1n2
is the Kaehler imbedding. The corresponding local version is also true.

Naturally, a Kaehler submanifold with parallel second fundamental form
is locally symmetric. So it is semi-symmetric, and hence by and it
is Weyl semi-symmetric. Now, by using Theorem [5.1{and Theorem B we give
a complete classification of Weyl semi-symmetric hypersurfaces in complex
projective space:

THEOREM 5.2. Let M be an n-dimensional complex hypersurface in
CP™ 1. If M is Weyl semi-symmetric, then it is locally congruent to a
complex quadric Q™ or to CP™.

Proof. More generally, let M be an n-dimensional complex hypersurface
in an (n + 1)-dimensional complex space form M"!(c), ¢ # 0. Assume that
M is Weyl semi-symmetric. Then hif = hgd;j/n, and so M is Einstein by
Theorem Accordingly, the scalar curvature r is constant on M. Then
by we find that ho is constant. Since M is hypersurface, we see that
hif = >, hirhrj.

Differentiating this relation covariantly, by , and the fact
that ho is constant, we obtain ) h;k-hy; = 0. Since hy = nc/2 if M is
not totally geodesic, we see that h;j, = 0, which means that the second
fundamental form of M is parallel.

Combining this result with Theorem B and considering the codimension
p =1, we complete the proof. m

Also, in the proof of Theorem 5.1} if we consider the two cases concerned
with the length of the second fundamental form hgy, we can easily verify the
following:
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COROLLARY 5.3. Let M be an n-dimensional complex hypersurface in
a complex hyperbolic space H"1(c), ¢ < 0. If M is Weyl semi-symmetric,
then it s totally geodesic.

Proof. When M satisfies 2ho = nc for ¢ < 0, the squared norm hy =
>ij hijhij of M in M"™(c), ¢ < 0, cannot be positive definite. This gives
us a contradiction. m

By using the same method as in the proof of Corollary [5.3] we obtain:

COROLLARY 5.4. Let M be an n-dimensional space-like complex hyper-
surface in an indefinite complex space form M{”l(c), c>0.If M is Weyl
semi-symmetric, then it is totally geodesic.

6. Projective semi-symmetric complex hypersurfaces. Let M be
an n-dimensional complex hypersurface of index 2s in an (n+1)-dimensional
semi-Kaehler space form M’ = ngtl(c), 0<s<mn,t=0o0rl, of index
2(s+1t) and of constant holomorphic sectional curvature c. We choose a local
field {U;} of unitary frames on M. Let {w;} be the dual frame fields. Then
the indefinite Kaehler metric tensor g of M is given by

g = 2Z€jo X wWj.
J
The connection forms on M are denoted by w = {w;;}.

Let M be an indefinite Kaehler manifold with two indefinite Kaehler
metrics ¢ and ¢’. Then the corresponding connection forms w and w’ are
projectively related if there exists a 1-form p such that the coefficients of the
connection forms w and w’ satisfy

wi;(Uk) = wij(U) + pjerdri + prejdii-
It can be easily seen that their Riemannian curvature tensors satisfy
R%jkl_ = Rijkl_ + fjf;jipkl_ + Ek(skipﬂ‘.

The corresponding projective curvature tensors G and G’ have components
defined by

1

(6.1) Gijei = Rijur — m(ejéjiskf+ €k0kiS;)
1

(6.2) G%jkf = R%jk[ — m(eﬂsﬁ%i + €k5sz;l’)

By (6.1]), we have
Sy =D &Rl =S+ (n+ py, Sir= S+ n+1)p;
T
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From (6.1)), (6.2]) and the above equations, we get
1
Gijpr = (Rijui + €i05ipat + exdripyp) — = €i05i{Sig + (n + Dper}

— 1€k5ki{5ji+ (n + 1)pﬂ*}

1

ikt~ o (C05iSh ki) = G
so G is the same for the two projectively related connections w and w'.
One calls G the complex projective curvature tensor of an indefinite Kaehler
manifold (M, g).

We say that a complex hypersurface M of index 2s is projective semi-
symmetric if R(X,Y)G = 0 for any vector fields X,Y on M. As can be
easily seen (cf. Goldberg [G] and Yano and Bochner [YB] in the definite
case), an indefinite Kaehler manifold M with vanishing G is of constant
holomorphic sectional curvature. If M is Einstein, the projective curvature
tensor coincides with the Weyl curvature tensor. Moreover, it can be easily
seen that the condition R(X,Y)R = 0 is equivalent to R(X,Y)G = 0 for
complex hypersurfaces M in semi-Kaehler space forms M’.

THEOREM 6.1. Let M be an n-dimensional projective semi-symmetric

complex hypersurface of index 2s in Ms"jtl (¢),0<s<n,t=00rl1,c #20.

Then M is totally geodesic with r = n(n + 1)c, or Einstein with r = n°c,
where r denotes the scalar curvature.

Proof. Since M is projective semi-symmetric,
(6.3) R(X,Y)G=0, X, YeTM.

This is equivalent to

G G =0.
By applying the Ricci identity to G, we have

(64) Z 6T(_jorEGFlmﬁ + jolfGErmﬁ + RijmfGI}lrﬁ - szrﬁGElmF) =0.
By (3.16) and (6.1)) we get

C

(6.5) G = {2€jk(5g‘i5kz + 0irdj1) — hjkhil}

1 (n+1)c (n+1)c
41 [gjéji{QEkékl - hkl2} + €k5ki{2€j5jl — hjZQ

ijklmp — Yijklpm

1 _

where hz-f =>4 skhikﬁkj as in Section
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Now substituting and into , we obtain
Z er [—{5ir(85i0rk + 0irj) — hjrhir }{ g (€101 Panp® + EmOmrhip?)
' — himbap }
+ {51080+ 6:1650) — Pjthir {7 (6 homp” + EmOmihug”) — hm P }
+{§€im(8ji0mr + 0imGjr) — hjmhir } { 77 (€161 Prp” +r0rhip”) — huphip }
— {550 (8ji0rp+0irbjp) — hijrhip {27 (€100 hmi” + Embmihiz) — himhie }]
-0,
which implies that

(66) {El(sliémémkhﬂjz + 5m5m,~5lélkhjﬁ2 — ijsjpgl(slkhmf2

2(n+1)

— € 0pEmOmrhi}

i {—emOmrhjihip® — ei0ihimhip® + e10mRiphm;® + mOmuhiphi; >}

c — _ _ _
+ 5{5j5jkhlmhip — €101 jmhip — EmOmihyihip + €0 iphimbi }
+ {—hikhimh;p® + Piphjih,g® + Bkphjmhy® = hiphimbz?} = 0.
Setting ¢ = m in (6.6]), multiplying the equation by &, and summing over m,

we get
c

o 1 1) EOwhip” + neidichy” — ejdjpeidichy — edphi’}
1 T 3,7 3 c 2 - - 9
+ m{ —hjihip” + hiphy”} + SAgi0ikhip” — Rty — nhujhip +;05ph" )

+ {—h”;?hij + Ekphjlhz + Ek:phlj?’ — hlﬁzhjEQ} =0,
where hﬁ?’ => s 5r58hirﬁrsh5j as in Section |3 Setting p = j in the above
equation, multiplying the equation by ¢; and summing over j, we obtain

6.7 hi?= "¢
( ) Ik n€l k>

which implies that M is Einstein, because of the relation ¢ # 0 and (3.17)).
Next, we investigate the scalar curvature r of M. Since hl,—c2 = %Elélk,
equation is reduced to

(6.8) {e101iEmOmiej0jpha + emomicidike j6jpho

_°
2n(n + 1)
— ejéjpalélksmémihg — EjfsjpgmémkmglélihQ}

c _ _ _ _
+ §{€j5jkhlmhip —&101ihjmbip — EmOmihijhip + €50 jphim i }

1 _ _ _ _
+ E{_hikhlmgj(sjth + hkphjl5m6mih2 + hkphjmgl(;lihZ — hiphlmgjéjkhQ} = 0.
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Furthermore, setting p = j in , multiplying the equation by e; and
summing over j, we get

(6.9) (2h2 — ne){(n + Dhymhir — emOmilyi” — e18ihy,; >} = 0.

Since M is Einstein, ho is a constant. So, first consider the case where
2he —nc = 0 on M, so that the squared norm hs of the second fundamental
form is equal to (n/2)c. Then in this case by we know that M is
Einstein with constant scalar curvature r = n2c.

Secondly, consider the case where 2ho —nc # 0 on M, and so gives
(6.10) (n + Dhumhix — emdmiby® — e101ib5° = 0,
from which in view of (6.7)) it follows that

1 1
(6.11) (n + 1)hlmhik — EEm(smiflfslkhQ — ﬁ&l(slié‘m(smkhg =0.

Setting n = k in , multiplying the equation by €5 and summing over k,
we obtain hahy, = 0. Thus hy = 0 on M, from which by it follows
that hy, = 0 on M. Hence M is totally geodesic with scalar curvature
r = n(n 4+ 1)¢, where we have used . This completes the proof of
Theorem [6.1] =

In particular, we consider the case where M is a projective semi-sym-
metric complex hypersurface in CP"*!. As an application of Theorem [6.1
and Theorem B we get:

THEOREM 6.2. Let M be an n-dimensional complex hypersurface in
CP"™1. If M is projective semi-symmetric, then it is locally congruent to a
complex quadric Q™ or to CP™.

Also, as in the proof of Theorem we can easily verify the following:

COROLLARY 6.3. Let M be an n-dimensional complex hypersurface in a
complex hyperbolic space H"*1(c), ¢ < 0. If M is projective semi-symmetric,
then it is totally geodesic.

Proof. When M is Einstein in the proof of Theorem and 2hy = nc
for ¢ < 0, the non-negativity of the squared norm of the second fundamental
form ho gives us a contradiction. So this case cannot occur. =

By using the same method as in the proof of Corollary [6.3] we get

COROLLARY 6.4. Let M be an n-dimensional complex hypersurface in
an indefinite complex space form Mf“(c), c¢> 0. If M is projective semi-
symmetric, then it is totally geodesic.
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7. Conformal semi-symmetric complex hypersurfaces. This sec-
tion is devoted to the investigation of conformal semi-symmetric hypersur-
faces in complex space forms.

Let M be an n-dimensional semi-Kaehler hypersurface of index 2s in an
(n + 1)-dimensional semi-Kaehler space form M’ = M} (c), 0 < s < n,
t = 0or 1, of index 2(s+t) and of constant holomorphic sectional curvature c.
We denote by R the Riemannian curvature tensor on M.

Recall that the conformal curvature tensor H on M has components

1
2(n+1)
As is easily seen, H is a curvature-like tensor on M.

The hypersurface M is said to be conformal semi-symmetric if

(7.1)  Hyp = Ry —

7

(Ekng(Skl + Engk(Sjl + EjS[k&‘j + EkS[j(sik).

(7.2) R(X, Y)H =0, X, YeTM.
It is easily verified that ([7.2)) is equivalent to
(73) ngkfmﬁ - ngkZﬁm = 0.

In fact, by applying the Ricci identity to H, we have

Z 57" erkHrlmp + Rz]erkrmp + Rz]m'erlrp RfjrﬁHElmF) =0.

From (| and ( we get

(7.5)  Hyy = 2n+ ){53( ithii® + 6jiby?) + ex(Brhji® + Srihji”)}

- hjkhz‘l'
By substituting (3.16)) and (| into , we obtain
ZET[{%gjr(éjifsrk + 6ir0jk) — h]rhzk}( n+1 {e1(6iphmi® + S himp”)
' + Em(Omphir” + Smrhip®) } — himbap)
— {$e1(0560u + 6adjr) — hjihir} (50 n+1 {er(Grphumi® + Srkhmp”)
- 57,1(<5m][,h7,,*C + Smkhep®) } = Brmlig)
— {5jm(8jibmr + Simdsr) — hjmhir} (g {€1(Gphy i + Suchrp”)
+ e Brphii® + Sy} — hivTiy)
+ {ggjr(‘sji‘srp"“sir‘sjp) hjrth}( n+1 {51(5lrhmk +5lkhmr )
+ m Omrhy? + Smkhir®) } — Pumbur)] = 0.

From this, after canceling some terms in each formula on the left side, we
arrive at
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(76) — m{sjéjk(gl%hm;? + €161 hmp” + EmOmphi® + EmOmilup®) }
+ giarny e0phichmg® + hjhihmg® + embmphichi;® + hjmhichip”}
+ Esjéjkhlmﬁip — hiphimhik
+ A(n+1) n+1 {5l5zl(5J5]phmk + 5J53khmp + Emémphjk + ‘Emémkh]p )}
— m{amémphﬂhik + hjthiph,i? + emOmihjihip® + hjihighs” )
— Se18ihimhigp + Py hjilg
+ gy emOmi(@0iph i + €duchyp” + 505phup? + €50 uhip")}
_ m&?l&phjmﬁik?’ + hjmbiphyi? + €10uhjmhip® + hjmhihiy”}
— SemOmihujhip + hii* hjmhicy
B m&j(sjp(ezézihmf + €10 P + EmOmilug” + emSmihi)}
+ agrny (0uhiphm® + hmhiphip? + emmihiphj® + hjhiph, i}
+ 5e50iphimbii — hji>humhip = 0.
From this we deduce

THEOREM 7.1. Let M be an n-dimensional conformal semi-symmetric

complex hypersurface of index 2s in ng}l( ), 0<s<n,t=0o0rl, c#0.

Then M is totally geodesic with r = n(n + 1)c, or Einstein with r = n’c,

where r denotes the scalar curvature.

Proof. Since R(X,Y)H = 0 for any X,Y on M, equation (7.6 holds.
Setting p = j in (7.6, multiplying the equation by €; and summing over j,
we get

c
_m{@n + 1) (e1015h,, 52 + EmOmilyi2) + (n+ 1) (101R72 + EmOmichyi)

_ — 3
— (e101i€mOmk + EmOmiciOi)ha}t + (hirhim® — Pimhir”)

1
(n+1)
c — _

+ §(n + Dhumbii + P i — holumbig, + P> B — humhi = 0.
Furthermore, setting [ = k in the above equation, multiplying the equation
by e and summing over k, we get
(7.7) c(nh,:> — hoem0mi) = 0,
which implies that M is Einstein, because of ¢ # 0 and (3.17)).

Now, we investigate the scalar curvature r of M. As h,,;*> = (h2/1)&m0mi,
equation ([7.6)) is reduced to
(7.8) nC{Ej(;jkhlmEip — 5l5lihjmﬁkp — 5m6mihljﬁkp + 5j5jphlmﬁki}
+ 2h2{—5j5jphlmﬁik + €m5mihjlﬁkp + El(slihjmﬁkp — Ej(sjkhlmﬁip} = 0.
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Setting p = j in the above equation, multiplying the equation by e; and
summing over m, we have

(7.9) (2h2 — nc){(n + 1)hlmﬁik — El(slihmEQ — 5m5mih”;2} =0.

Since M is Einstein, ho is a constant. So, first consider the case where
2hs — nc = 0 on M; then the squared norm ho of the second fundamental
form is (n/2)c. In this case by (3.18) we know that M is Einstein with

constant scalar curvature r = nc.

Secondly, assume that 2hy — ne # 0 on M. Then ([7.9) gives

(7.10) (n + Dhimhik — €161ihyg;> — EmOmiby® = 0.
Multiplying by erhg: and summing over k, we get
(7.11) (n + Dhimhi® = €10iihme® — emdmilu® = 0,
from which by it follows that

(7.12) (n + 1) hymetdriha — €10;hmiha — emdmihiha = 0.

Setting t = ¢ in the above equation, multiplying the equation by e; and
summing over t, we get

(n+2)(n — 1)hahyy, = 0.

Thus hy = 0 on M, from which in view of (7.10)) it follows that h;; = 0 on M.
In other words, M is totally geodesic with scalar curvature r = n(n + 1)c,

where we have used (3.18]). =

REMARK 7.2. If M is Einstein, then M is semi-symmetric if and only if
M is conformal semi-symmetric.

In particular, we consider the case where M is a conformal semi-sym-
metric complex hypersurface in CP"t1. As an application of Theorem
and Theorem B we obtain:

THEOREM 7.3. Let M be an n-dimensional complex hypersurface in
CP™ L. If M is conformal semi-symmetric, then it is locally congruent to
a complex quadric Q™ or to CP™.

Also, as in the proof of Theorem by using the same method as in
Corollaries for an Einstein hypersurface M in M"*1(c), ¢ < 0, satis-
fying 2he = nc, we arrive at a contradiction, because the squared norm hg is
always non-negative. So we can easily verify the following:

COROLLARY 7.4. Let M be an n-dimensional complex hypersurface in a
complex hyperbolic space H" 1 (c), ¢ < 0. If M is conformal semi-symmet-
ric, then it is totally geodesic.

By applying the same method to space-like hypersurfaces with time-like
normal direction, we can verify
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COROLLARY 7.5. Let M be an n-dimensional complex space-like hyper-
surface in an indefinite complex space form M?H(c), c>0.If M is con-
formal semi-symmetric, then it is totally geodesic.
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